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Abstract We set out to construct a Lie algebra of local currents whose space integrals,
or “charges”, form a subalgebra of the deformed Heisenberg–Poincaré algebra of quantum
mechanics discussed by Vilela Mendes, parameterized by a fundamental length scale �. One
possible technique is to localize with respect to an abstract single-particle configuration
space having one dimension more than the original physical space. Then in the limit � → 0,
the extra dimension becomes an unobservable, internal degree of freedom. The deformed
(1 + 1)-dimensional theory entails self-adjoint representations of an infinite-dimensional
Lie algebra of nonrelativistic, local currents modeled on (2 + 1)-dimensional space-time.
This suggests a new possible interpretation of such representations of the local current al-
gebra, not as describing conventional particles satisfying bosonic, fermionic, or anyonic
statistics in two-space, but as describing systems obeying these statistics in a deformed one-
dimensional quantum mechanics. In this context, we have an interesting comparison with
earlier results of Hansson, Leinaas, and Myrheim on the dimensional reduction of anyon
systems. Thus motivated, we introduce irreducible, anyonic representations of the deformed
global symmetry algebra. We also compare with the technique of localizing currents with
respect to the discrete positional spectrum.
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1 Global and Local Symmetries

1.1 Heisenberg–Poincaré and Heisenberg–Euclid Symmetry Algebras

Recently Vilela Mendes and other researchers have reconsidered the combined Heisenberg
and Poincaré Lie algebras as describing the kinematics of relativistic quantum mechanics
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[1, 2]. This Lie algebra is specified by the following commutation relations among the 4-
vectors qν and pμ (μ, ν = 0,1,2,3), and the Lorentz generators Mμν : the canonical Heisen-
berg brackets,

[pμ,qν] = i�ημνJ ,

[qμ, qν] = [pμ,pν] = [qμ,J ] = [pμ,J ] = 0,
(1)

together with the Lorentz brackets,

[Mμν,Mρσ ] = i(Mμσ ηνρ + Mνρημσ − Mνσ ημρ − Mμρηνσ ), (2)

the brackets embodying the covariance of the 4-vectors p and q ,

[Mμν,pλ] = i(pμηνλ − pνημλ), [Mμν, qλ] = i(qμηνλ − qνημλ), (3)

and the final bracket expressing the centrality of the element J ,

[Mμν,J ] = 0,

where ημν = diag[1,−1,−1,−1] in units with c = 1.
The kinematical properties of a nonrelativistic quantum particle may be described by

a self-adjoint representation in Hilbert space of the subalgebra of this Lie algebra corre-
sponding to the spatial components only (i.e., replacing the indices μ,ν by j, k = 1,2,3).
Let us call this subalgebra the Heisenberg–Euclid algebra. Then (1–3) incorporate the global
translation and rotation symmetry of Minkowskian space-time, while the Heisenberg–Euclid
algebra incorporates the global translation and rotation symmetry of Euclidean space.

1.2 Nonrelativistic Local Current Algebra

Let us write the local currents whose space integrals give us the global Heisenberg–Euclid
symmetry algebra. Nonrelativistic quantum theory has been described quite generally and
successfully by representing the “equal time” local current algebra of the mass density
operator-valued distribution ρ and the momentum density operator-valued distribution J,
as follows [3–7]. Let f,f1, f2 be compactly-supported C∞ (real-valued) scalar functions
on the physical space R3, and let g,g1,g2 be compactly-supported C∞ vector fields on R3.
Formally, one writes

ρ(f ) =
∫

R3
ρ(x)f (x)d3x, J (g) =

∫
R3

J (x) · g(x)d3x, (4)

and then

[ρ(f1), ρ(f2)] = 0, [ρ(f ), J (g)] = i�ρ(g · ∇f ),

[J (g1), J (g2)] = −i�J ([g1,g2]),
(5)

where [g1,g2] = g2 ·∇g1 − g1 ·∇g2 is the usual Lie bracket of vector fields. In the 1-particle
Hilbert space L2

d3x
(R3), we have the self-adjoint representation

[ρ(f )Ψ ](x) = mf (x)Ψ (x),

[J (g)Ψ ](x) = �

2i
{g(x) · ∇Ψ (x) + ∇ · [g(x)Ψ (x)]},

(6)
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where Ψ (x) is a square-integrable function (the probability amplitude for a single quantum
particle in R3), and m is the particle mass. Note that the C∞ property is needed to be able
to define the bracket, and thus the infinite-dimensional Lie algebra. One may replace R3 by
a manifold M that lacks the global symmetries, and still describe quantum mechanics by
representing the local current algebra of (5).

Labeling an element of the Lie algebra by the pair (f,g), it is useful (in anticipation
of writing a deformed current algebra) to introduce (in the sense of (6)), the differential
operator

Q(f,g) = f (x) + 1

2i
{g(x) · ∇ + ∇ · g(x)}, (7)

which may also be defined from (6) by Q(f,g) = (1/m)ρ(f ) + (1/�)J (g); so that ρ(f ) =
mQ(f,0) and J (g) = �Q(0,g).

Taking the test function f (x) to approximate an indicator function χB(x) for a Borel
set B ⊆ R3, we see that the expectation value (Ψ,ρ(f )Ψ ) in the 1-particle Hilbert space
approximates m

∫
χB(x)|Ψ (x)|2d3x, which is the mass times the usual probability for find-

ing the particle in the region B . Taking f (x) to be an approximating sequence of func-
tions to δ(3)(x − x0), for a fixed point x0 ∈ R3, then (Ψ,ρ(f )Ψ ) approaches m|Ψ (x0)|2.
These approximations are always to be understood in some “weak” sense—neither χB(x)

nor δ(x − x0) belongs to the space of compactly-supported C∞ functions.
One easily sees how to recover the Heisenberg–Euclid algebra: if f (x) approximates

the coordinate function xj , then ρ(f ) approximates the moment operator mqj acting in
L2

d3x
(R3) via multiplication by mxj . Similarly, if g(x) is taken to approximate a constant

vector field in the j -direction, so that (let us say) gj (x) ∼ 1 with gk(x) = 0 for k �= j , then
J (g) approximates the differential operator −i�∂/∂xj , which is just the momentum operator
pj acting on a domain in L2

d3x
(R3). If I is the identity operator, we then have

[qj ,pk] = i�δjkI. (8)

Likewise the generators of spatial rotations may be recovered in the 1-particle Hilbert space.
For instance, we approximate the operator generating rigid rotation about the x3-axis (i.e.,
the operator for the x3-component of orbital angular momentum) by choosing a sequence
of vector fields g, with coordinate components g1(x) = −x2, g2(x) = x1, and g3(x) ≡ 0 in
the interior of a large spherical region |x| ≤ R, while outside this region we let g(x) fall
smoothly to 0. Then as the radius R increases, matrix elements of J (g) approximate matrix
elements of the operator �M12 acting in L2

d3x
(R3) on a suitable domain.

We thus have a clear relation in R3 between the usual 1-particle, self-adjoint representa-
tion of the local current algebra, and an irreducible representation of the global symmetry
algebra. Similar statements hold for Rd , d = 1,2, . . . .

The infinite-dimensional group obtained by exponentiating the local current commutators
is the natural semidirect product of the group of compactly-supported C∞ scalar functions
with the group of compactly-supported diffeomorphisms of the spatial manifold.

1.3 Bose, Fermi, and Intermediate Quantum Statistics

The local current algebra has many other, mutually inequivalent, irreducible self-adjoint
representations, which can be obtained and understood by classifying the continuous irre-
ducible unitary representations of the corresponding group [5, 7]. In particular, for space
dimension d ≥ 2, we have for each natural number N ≥ 2 unitarily inequivalent represen-
tations that describe N indistinguishable particles obeying Bose or Fermi statistics. These
may be obtained via inducing from the 1-dimensional unitary representations of the sym-
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metric group SN [8]. For N ≥ 3, we also have inequivalent representations induced by the
higher-dimensional representations of SN , describing particles obeying parastatistics [7, 9].

Moreover, in two space dimensions we have representations that describe N indistin-
guishable particles obeying the intermediate statistics of anyons [10–16], induced by the
1-dimensional unitary representations of the braid group BN [6, 14, 17]. Here a single coun-
terclockwise exchange of two particles multiplies the wave function by a phase exp[iπλ],
where (for each such representation) λ is fixed between 0 and 2. The value λ = 1 corre-
sponds to fermions, while λ = 0 corresponds to bosons. In addition, there exist representa-
tions in two-space (for N ≥ 3) induced by higher-dimensional braid group representations
(describing particles called plektons) [18].

The case of one space dimension is still different. Here, the Bose and Fermi and interme-
diate representations of the local current algebra are all unitarily equivalent. The different
possibilities for quantum statistics, including the intermediate statistics, are associated with
a one-parameter family of distinct self-adjoint extensions of the differential operator for the
kinetic energy part of the Hamiltonian [5, 10]. These in turn are characterized by a bound-
ary condition on wave functions in the domain of the Hamiltonian operator, which applies
where the coordinate separation of adjacent particles is zero: (∂Ψ/∂x)|x=0 = ηΨ |x=0, where
x > 0 is the relative coordinate between adjacent particles in one-dimensional space.

Hansson, Leinaas, and Myrheim have considered two ways to relate intermediate sta-
tistics in two-dimensional space with intermediate statistics in one dimension [19]. One is
to confine anyonic particles in two-space by means of a narrow potential well. The second
is to consider anyons moving in a strong magnetic field, restricting attention to the lowest
Landau level. The present article offers a third possibility: taking the � → 0 limit of anyonic
representations of an �-deformed algebra of currents that we shall discuss in the next section.

In each of the aforementioned representations of the nonrelativistic current algebra, for
arbitrary finite N , it is possible to obtain from the local currents a representation of the
Heisenberg–Euclid algebra as a global symmetry algebra. As before, one approximates the
moment operators in each spatial direction, the total momentum operators in each spatial
direction, and the total orbital angular momentum operators about each axis. However, the
representations of the global symmetry algebra thus obtained are, in general, no longer ir-
reducible. They are tensor products (symmetric, antisymmetric, or braided) of irreducible
representations [20].

1.4 A Deformed Lie Algebra for Quantum Mechanics

Now the Heisenberg–Poincaré algebra of (1–4) has nontrivial second cohomology, a nec-
essary condition for it to be deformable [21]. The members of a family of nontrivial de-
formations of this Lie algebra, parameterized by two length parameters � and R, have the
property of “stability” or “rigidity”—meaning that small changes in their structure constants
produce isomorphic Lie algebras [22–25]. This deformation by � and R, discussed by Vilela
Mendes, is a particular choice among other possibilities and was the starting point for the
present work. Chryssomalakos and Okon discuss all the possible stable deformations of the
Heisenberg–Poincaré algebra, including an explanation of the relevant cohomology theory
and detailed references.

In the deformed Heisenberg–Poincaré algebra, (2–4) are unchanged, while (1) are re-
placed by the following:

[pμ,qν] = i�ημνJ , [qμ, qν] = −iε�2Mμν,

[pμ,pν] = −i
ε′

�
2

R2
Mμν, [qμ,J ] = iε

�2

�
pμ, [pμ,J ] = −i

ε′
�

R2
qμ,

(9)
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where ε and ε′ are ±1. As � → 0 and R → ∞, we recover the original algebra. This de-
formed Lie algebra is isomorphic to the Lie algebra of the orthogonal group in six dimen-
sions, with metric ηab = diag[1,−1,−1,−1, ε′, ε]. The limit procedure here is already an-
ticipated in the method of reduction of certain representations of SO(4,2) by Barut and
Bohm [26]. In our nonrelativistic framework, it is natural to study the case ε = −i, where
time has a continuous spectrum.

Since the (small) parameter � is relevant locally, we follow Vilela Mendes in focusing on
the algebra obtained by taking R → ∞, so that the right-hand sides of the brackets involving
R in (9) become zero. To describe the corresponding nonrelativistic quantum mechanics, we
consider self-adjoint representations of the resulting modified Heisenberg–Euclid subalge-
bra, given by the spatial components of (2–4) together with the brackets:

[qj , qk] = i�2Mjk, [qj ,pk] = iδjk�J , [qj ,J ] = −i
�2

�
pj ,

[pj ,pk] = [pj ,J ] = 0,

(10)

where j, k = 1,2,3 (and ε = −1). The Lie algebra of (2–4) for j, k = 1,2,3, together
with (10), now describes the global symmetry of the deformed quantum theory. An es-
pecially interesting feature is that in a self-adjoint representation of this deformed symmetry
algebra, the coordinate operators qμ no longer commute.

1.5 The Problem of Local Current Algebra for the Deformed Symmetry

We thus arrive at the problem situation described by the four cells of Fig. 1. The two cells
in the upper row refer to finite-dimensional Lie algebras describing global symmetry; those
in the lower row refer to infinite-dimensional Lie algebras of local currents describing lo-
cal symmetry. The two cells in the left-hand column refer to the undeformed Lie algebras
describing the symmetry of conventional nonrelativistic quantum mechanics; those in the
right-hand column refer to the Lie algebras of the deformed theory with � > 0.

Fig. 1 Desired characteristics of the deformed local current algebra
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Evidently our goal is to construct (and represent by self-adjoint operators in Hilbert
space) an infinite-dimensional local current algebra (in the cell on the lower right), para-
meterized by �, with the following properties. When we average the local currents with test
functions that (in an appropriate weak limit) become constant across all of space, we should
recover the subalgebra of (2–4) together with (10), i.e., we move from the lower right-hand
cell to the upper right-hand cell. Moreover, when we take � to zero, we should recover (in
some mathematical sense) the usual local current algebra of nonrelativistic quantum me-
chanics, moving from the cell on the lower right to the cell on the lower left.

In addition, we shall need to pay attention to the Hamiltonian operator in such an
�-deformed theory, and what happens to it as � → 0.

2 Deformed Local Current Algebras

In Ref. [27], we developed and discussed in some detail two alternative ways to construct an
infinite-dimensional Lie algebra meeting these specifications. Each has certain advantages
and disadvantages. In this section, we briefly outline some of those results and expand on
the discussion, focusing on the case where the spatial dimension d = 1.

2.1 Local Current Algebra in Augmented Physical Space

First let us rewrite (6) for a two-dimensional Euclidean space, with coordinates (x,w). This
will provide a way to represent local currents for the Lie algebra of (10) with d = 1 (so that
the indices j = k = 1). We think of x as the usual spatial coordinate for the particle mov-
ing in one dimension, and we regard w as extending the spatial manifold by an additional
dimension that is unobserved in conventional physics.

We have then a class of self-adjoint operators Q(h,gx, gw) in L2
dxdw(R2), where h(x,w)

is a compactly-supported, real-valued C∞ function on R2, and where gx, gw are the coordi-
nate components of a compactly-supported, C∞ vector field on the xw-plane:

[Q(h,gx, gw)Ψ ](x,w) =
{
h(x,w) + 1

2i

[
gx(x,w)

∂

∂x
+ ∂

∂x
gx(x,w)

]

+ 1

2i

[
gw(x,w)

∂

∂w
+ ∂

∂w
gw(x,w)

]}
Ψ (x,w). (11)

We recover (6) in two space dimensions by setting ρ(h) = mQ(h,0,0), and J (g) =
�Q(0, gx, gw). Now let � > 0 be a small length parameter, and define

Q�(h,gx, gw) = Q(h,�gx, �gw). (12)

Then we actually have in (11–12) a parameterized family of Lie algebras represented by
self-adjoint operators.

Suppose we fix � �= 0. Let h(x,w) approach the coordinate function x, and let
(gx(x,w), gw(x,w)) approach the vector field with coordinate components (−w,x). Then
we recover from Q� the operator q , given by

q = x + i�

(
w

∂

∂x
− x

∂

∂w

)
. (13)
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Let us further set p = (�/�) limgx→1 Q�(0, gx,0) (the limit being taken as gx approaches the
constant component function of magnitude 1), and J = limh→1,gw→1 Q�(h,0, gw) (the limit
taken as both h and gw become identically 1). Then we have

p = −i�
∂

∂x
, J = I − i�

∂

∂w
. (14)

The operators of (13) and (14) represent the deformed Heisenberg brackets with d = 1, as
desired:

[q,p] = i�J , [q,J ] = −i
�2

�
p, [p,J ] = 0. (15)

Equations (13–14) actually form a reducible representation of the Lie algebra (15), in the
Hilbert space L2

dxdw(R2). This might be seen as a disadvantage to our approach. However,
we already have the experience of obtaining reducible representations of the global symme-
try algebra from irreducible representations of the local current algebra (in the case of N

indistinguishable particles, N > 1, as described in Sect. 1). Thus we do not interpret this as
a fundamental objection.

A local current corresponding to p is

J (g) = �

2i

{
g(x)

∂

∂x
+ ∂

∂x
g(x)

}
, (16)

where g(x) is a compactly-supported C∞ function on R, while a local current corresponding
to J is

J (k) = k(w) + �

2i

{
k(w)

∂

∂w
+ ∂

∂w
k(w)

}
, (17)

where k(w) is likewise a compactly-supported C∞ function on R. These currents embody
the (infinitesimal generators of) compactly-supported flows in the separate coordinate direc-
tions x,w.

But it does not suffice for our purposes to use local currents depending separately on x

and w, because of the way the operator q mixes the x and the w directions. This is why we
must incorporate dependence on both variables in the test functions h,gx and gw that appear
as arguments of Q�, and use the full Lie algebra of local currents in two dimensions. The
local currents in (16–17) are expressed in terms of Q� by the equations,

J (g) = lim
gx→g

�

�
Q�(0, gx,0), J (k) = lim

h→k
lim

gw→k
Q�(h,0, gw), (18)

where the (weak) limit of functions refers to the fact that the test functions g and k depend
only on x, whereas the test functions h,gx, gw (being compactly-supported in the xw-plane)
must depend on both variables.

In the representation of the global symmetry algebra by (13–14), the operators approach
the standard representation of the Heisenberg algebra as � → 0. Note that in this limit the w

coordinate is still present, but it becomes unobservable (in our physical interpretation).
Finally, we consider how to obtain the local current algebra for one space dimension,

when � → 0. The operator Q�(h,gx, gw) becomes the multiplication operator Q(h,0,0) for
any choice of gx, gw . Letting f (x) be a real-valued, compactly-supported C∞ function on
the line, we thus have the mass density operator

ρ(f ) = lim
h→f

mQ(h,0,0) = lim
�→0

lim
h→f

mQ�(h,gx, gw). (19)
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But recovery of the momentum density operators J (g) from the representations Q� in
the � → 0 limit is slightly more problematic. One alternative is to introduce J (g) anew in
this limit, writing

J (g) = lim
gx→g

lim
�→0

�

�
Q�(0, gx,0). (20)

But since we already have the desired expression for J (g) from (18), before taking
� → 0, another possibility is to take the combined Lie algebra represented by the opera-
tors Q�(h,gx, gw) [with test functions compactly-supported in R2], together with the oper-
ators J (g) [with test functions compactly-supported in R1], as the desired �-deformed local
current algebra.

In short, referring to the second column of Fig. 1, the Lie algebra of (15) expresses the
global symmetry of the deformed quantum theory in one space dimension. One way to
obtain a description of a corresponding local symmetry is by (11) and (12), based on the
usual local current algebra on a space augmented by the coordinate w, together with (16).

Referring to the first row of Fig. 1, we have that (13), (14), and (15) all go over smoothly
(as � → 0) to the Heisenberg algebra in one dimension and the usual operators representing
it (albeit in a reducible representation that retains the variable w). Referring to the second
row of Fig.1, in the � → 0 limit, we recover the usual, irreducible representation of the local
current algebra in one space dimension from an irreducible representation of the �-deformed
local current algebra described here.

In this subsection, we have elaborated considerably on the discussion in Ref. [27]. In that
article we also discuss various unitarily equivalent representations of the global symmetry
algebra, the direct integral decomposition of reducible representations into irreducibles, and
the sense in which the Heisenberg algebra is obtained as the � → 0 limit of a family of
irreducible representation of the global symmetry algebra.

To write irreducible representations of (15), note that the Casimir operator

C = 1

�2
p2 + 1

�2
J 2 (21)

commutes with the generators q,p, and J . In an irreducible representation, C takes the
value ρ2

0 . The self-adjoint operator representing q in such an irreducible representation has
a discrete eigenvalue spectrum, given by {n�,n ∈ Z}. Hence another alternative, which we
next describe, is to try to work within a single irreducible representation of the global sym-
metry algebra, interpreting “locality” with respect to this positional spectrum.

2.2 A Discretized Infinite-Dimensional Algebra

In the Hilbert space spanned by the complete orthonormal set of vectors {|n�〉, n ∈ Z}, with
q|n�〉 = n�|n�〉, we have

〈n�|q|m�〉 = δn,mm�, 〈n�|p|m�〉 = �ρ0

2i
(δn+1,m − δn−1,m),

〈n�|J |m�〉 = �ρ0

2
(δn+1,m + δn−1,m),

(22)

and C = ρ2
0I . Since

q =
∞∑

n=−∞
n�|n�〉〈n�|, (23)
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the corresponding local mass density operator Jq should be defined by

Jq(g) = m
∞∑

n=−∞
g(n�)|n�〉〈n�|, (24)

where the compactly-supported real-valued functions g are such that for all but finitely many
n ∈ Z, g(n�) = 0. Then, as g(n�) (weakly) approximates the function n�, Jq(g) approxi-
mates the moment operator mq . Note that when g(n�) approximates the constant function 1,
Jq(g) approximates mI , where I is the identity operator.

To write local currents corresponding to the operators p and J , define

Jp(h) = 1

2

∞∑
n=−∞

h̃(n�){p|n�〉〈n�| + |n�〉〈n�|p}, (25)

JJ (r) = 1

2

∞∑
n=−∞

r̃(n�){J |n�〉〈n�| + |n�〉〈n�|J }, (26)

where h(n�) ≡ (1/2)[h̃(n�)+ h̃((n+ 1)�)] and r(n�) ≡ (1/2)[r̃(n�)+ r̃((n+ 1)�)] are also
compactly supported. Equivalently,

Jp(h) = �ρ0

2i

∞∑
n=−∞

h(n�){|n�〉〈(n + 1)�| − |(n + 1)�〉〈n�|}, (27)

JJ (r) = �ρ0

2

∞∑
n=−∞

r(n�){|n�〉〈(n + 1)�| + |(n + 1)�〉〈n�|}. (28)

When h̃(n�) and r̃(n�) become identically 1, so do h(n�) and r(n�). Then Jp(h) approxi-
mates p, JJ (r) approximates J , and the global symmetry algebra is recovered.

Thus the infinite-dimensional Lie algebra generated by Jq(g), Jp(h), and JJ (r) is another
candidate for the lower right-hand entry in Fig. 1. It integrates to the correct global symmetry
algebra, and may be written in the Hilbert space of a single irreducible representation of the
global algebra. Moreover, the localization of the currents has a more immediate physical
interpretation, without the introduction of an additional spatial dimension.

However, the limit � → 0 is problematic. To recover the usual irreducible representation
of Heisenberg algebra from the � → 0 limit of irreducible representations of the deformed
global algebra, we showed in Ref. [27] that we needed to simultaneously take ρ0 → ∞, with
ρ0 ∼ 1/�. But this does not carry over to the corresponding local algebras.

In order that the Lie algebra generated by the discretized currents be local, in the irre-
ducible representation labeled by ρ0, we would need the commutator brackets of the op-
erators Jq(g), Jp(h), and JJ (r) given by (24), (27), and (28) to yield similarly local ex-
pressions. These expressions are all linear combinations of operators of the form |n�〉〈n�|,
|n�〉〈(n + 1)�|, and |(n + 1)�〉〈n�|. We straightforwardly obtain

[Jq(g1), Jq(g2)] = 0, (29)

[Jq(g), Jp(h)] = −i
m�

�
JJ (r), (30)
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where r(n�) = h(n�){g(n�) − g([n + 1]�)}, and

[Jq(g), JJ (r)] = i
m�

�
Jp(h), (31)

where h(n�) = r(n�)(g(n�)−g([n+ 1]�)), which thus far are satisfactorily local. But other
commutators, such as [Jp(h), JJ (r)], generate terms with |(n + 1)�〉〈(n − 1)�| and |(n −
1)�〉〈(n + 1)�|. Successive commutators generate additional terms |(n − m)�〉〈(n + m)�|
and |(n + m)�〉〈(n − m)�|, for arbitrary m ∈ Z. To close the Lie algebra of these currents,
one is thus forced to include new basis elements in the current algebra, having more general
forms; e.g.,

∞∑
n,m=−∞

s(n�,m�){|(n + m)�〉〈(n − m)�| ± |(n − m)�〉〈(n + m)�|},

where s is compactly supported on the square lattice of points (n�,m�). Such currents are
nonlocal in the positional eigenvalues, since (n − m)� and (n + m)� become arbitrarily far
apart. This sort of behavior by the commutation relations of discretized local derivatives is
well-known in the context of lattice models. But in our context, it poses additional difficulties
in recovering the nonrelativistic local current algebra in the � → 0 limit.

We also note that a theory of space-time based on the discrete positional spectrum of the
operator q moves in the direction of the finite-dimensional quantum theory advocated by
David Finkelstein, in his January 2006 lecture in Oberwolfach [28].

2.3 The Kinetic Energy Hamiltonian

In [1] it was suggested that for a particle of mass m, we should use for the kinetic energy
Hamiltonian the operator H0 = p2/2m, where p is the generator appearing in the algebra
of (15), and that the oscillator Hamiltonian should then be Hosc = p2/2m + mω2q2/2. But
we argue for a different choice—H0 should lead to the physical, kinematical condition that
the time-derivative of the particle position is the particle velocity. That is, we should expect
H0 (as well as Hosc) to satisfy,

q̇ = 1

i�
[q,H0] = 1

i�
[q,Hosc] = p

m
. (32)

But from the deformed Heisenberg brackets in (15), we have the fact that

(1/i�)[q,p2/2m] = (pJ +Jp)/2m. (33)

The right-hand side of (33) equals p/m when J is the identity operator, but otherwise it
does not! To fulfill (32), we change the form of the kinetic energy term in the Hamiltonian,
setting

H0 = 1

2m

{
p2 + �

2

�2
(J − I )2

}
, (34)

where I is the identity operator in the representation of the Lie algebra.
The coefficient �

2/�2 in (34) is required in order to obtain the correct bracket with q . In
the representation of (13–14), we then have
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H0 = − �
2

2m

{
∂2

∂x2
+ ∂2

∂w2

}
. (35)

Note that this form does not change when � → 0. Our interpretation is that wave functions
in low-energy states become decreasingly dependent on the variable w as � → 0, so that the
second term of (35) tends to vanish for observable particle states in this limit. The above
choice for H0 also opens the way to multiparticle states satisfying anyonic statistics, as
introduced in the following section.

Note that taking the full Hamiltonian H to be H0 +V (q), we continue to have q̇ = p/m.
However, in the representation of (13–14), the operator V (q) is not a multiplication operator
but in general some higher-order differential operator.

Let us conclude with a brief discussion of equations of continuity for the deformed
quantum theory. With Q� acting via (11–12) in L2

dxdw(R2), we already have operators
ρ�(h) = mQ�(h,0,0), J�(g) = (�/�)Q�(0, gx, gw), and the free Hamiltonian H0� given
by (35). Just as in the standard quantum mechanics for two space dimensions, we then have

ρ̇�(f ) = 1

i�
[ρ�(f ),H0�] = J�(∇f ), (36)

which is a kind of continuity equation for the mass density in the augmented space (i.e., in
xw-space). However, when � �= 0, this does not have the interpretation of an equation of
continuity for the mass density in positional space. Furthermore, it no longer holds if H0 is
replaced by H = H0 + V (q).

But within the framework of the discretized current algebra, we have an equation of con-
tinuity relating the time-derivative of Jq to the spatial divergence of Jp . Taking the Hamil-
tonian H to be H0 + V (q), with H0 given by (34), one obtains after a rather lengthy calcu-
lation,

J̇q(g) = 1

i�
[Jq(g),H ] = Jp(Dg), (37)

where

Dg(n�) ≡ g((n + 1)�) − g(n�)

�
(38)

is the discretized derivative. As noted above, the density Jq and current Jp in this continuity
equation are local, but belong to a Lie algebra that necessarily includes nonlocal operators.

3 Anyonic Representations

In this section we sketch briefly how anyonic representations arise in the present framework.
Further details will be provided in subsequent work.

First consider the local current we discussed in Sect. 2.1; i.e., the combined Lie alge-
bra represented by Q�(h,gx, gw) [with test functions having compact support in R2] and
J (g) [with test functions compactly-supported in R1]. A 2-particle representation of this
local current algebra, where the particles are indistinguishable, acts in the Hilbert space
of wave functions on the configuration space of 2-point subsets of xw-space, square-
integrable with respect to a (local) Lebesgue measure. Let us write such a wave function
as Ψ (2)(x1,w1;x2,w2), with the coordinates indexed so that x1 < x2, or when x1 = x2, we
have w1 < w2. Then we have the representation
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Q�(h,gx, gw)Ψ (2) =
{
h(x1,w1) + �

2i

[
gx(x1,w1)

∂

∂x1
+ ∂

∂x1
gx(x1,w1)

]

+ �

2i

[
gw(x1,w1)

∂

∂w1
+ ∂

∂w1
gw(x1,w1)

]}
Ψ (2)

+
{
h(x2,w2) + �

2i

[
gx(x2,w2)

∂

∂x2
+ ∂

∂x2
gx(x2,w2)

]

+ �

2i

[
gw(x2,w2)

∂

∂w2
+ ∂

∂w2
gw(x2,w2)

]}
Ψ (2), (39)

along with

J (g)Ψ (2) = �

2i

{
g(x1)

∂

∂x1
+ ∂

∂x1
g(x1)

}
Ψ (2) + �

2i

{
g(x2)

∂

∂x2
+ ∂

∂x2
g(x2)

}
Ψ (2), (40)

where the final arguments in the sense of (11) are suppressed. Since the test function g

depends on x but not on w, the operator J (g) generates independent translations of the
two particles in the x-direction. Such translations do not alter the order relation x1 < x2,
or x1 = x2. On the other hand, the operator Q�(0, gx, gw) generates general, independent
motions of the points at (x1,w1) and (x2,w2). Thus we have the possibility, as in Ref. [11],
of generating a rotation of one particle about the other. One way to obtain anyon statistics is
in the selection of a corresponding boundary condition on the two-particle wave functions.
That is, rewrite Ψ (2) using the relative coordinates (x,w) = (x2 − x1,w2 − w1) and, say,
the center of position coordinates (x0,w0) = (1/2)(x2 + x1,w2 + w1). Express (x,w) in
polar coordinates (r, θ) with r > 0,−π/2 ≤ θ ≤ π/2. Then we may impose an “anyonic”
boundary condition, Ψ (2)|θ=π/2 = exp[iπλ]Ψ (2)

θ=−π/2, on wave functions in the domain of the
local current operators.

As noted earlier, the Hilbert space for an irreducible representation of the local current al-
gebra may be expressed as a direct integral of irreducible representations of the global sym-
metry algebra. As described in Refs. [1] and [27], an irreducible representation in which the
Casimir operator C acts as ρ2

0I may be written in the Hilbert space Ĥρ0 of square-integrable
functions on a circle of radius ρ0 in the kxkw-plane, where (kx, kw) are the coordinates ob-
tained by Fourier transform of a representation in xw-space. Introducing polar coordinates
(ρ,ψ) with kx = ρ sinψ,kw = ρ cosψ,dkxdkw = ρdρdψ , the operators become

q̂ = i�
∂

∂ψ
,

p̂ = �ρ sinψ,

Ĵ = �ρ cosψ.

(41)

Now p̂ and Ĵ are bounded operators, defined on all of Ĥρ0 , while q̂ is symmetric
but unbounded—thus its domain of definition must be specified. The usual eigenstates of
i�∂/∂ψ in Ĥρ0 are given by wave functions Ψ̂n(ψ) = exp[−inψ], so that q̂Ψ̂n = n�Ψ̂n,
justifying (22–23). These eigenfunctions and their linear combinations satisfy Ψ̂ |ψ=2π =
Ψ̂ |ψ=0, a periodic boundary condition on elements of the domain of q̂ that is unchanged by
the multiplication operators p̂ and Ĵ . However, there is a one-parameter family q̂(α) of dis-
tinct self-adjoint operators, described by the differential operator i�∂/∂ψ acting in Ĥρ0 on

domains of wave functions obeying boundary conditions Ψ̂ (α)|ψ=2π = exp[−2iπα]Ψ̂ (α)|ψ=0
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(0 ≤ α < 1). The eigenfunctions of q̂(α) are Ψ̂ (α)
n (ψ) = exp[−i(n + α)ψ], with correspond-

ing eigenvalues (n+α)�. Again, the boundary condition is unchanged by the multiplication
operators p̂ and Ĵ . Since the spectrum of the operator representing q is different in each
representation, they cannot be unitarily equivalent. Of course, for a single free particle, we
may choose to remove α by (arbitrarily) changing the origin with respect to which “posi-
tion” is defined—in effect, redefining the position operator in such a representation to be
q̂(α) − α�I . But in the two-particle case, redefining the origin cannot change the relative
coordinate. Here, the α �= 0 representations of the global symmetry algebra lead us again to
anyon statistics.

We showed in Ref. [27] that the appropriate way to recover the Heisenberg algebra from
irreducible representations of the deformed global symmetry algebra is to let ρ0 → ∞ as
� → 0, with ρ0 ∼ 1/�. Our final remark is to suggest the possibility that the boundary con-
dition (∂Ψ/∂x)|x=0 = ηΨ |x=0 on wave functions in the domain of the kinetic energy Hamil-
tonian can result from the process of taking the � → 0 limit of N -anyon representations of
the deformed local current algebra, providing an interesting new context for dimensional
reduction for anyon systems in the spirit of earlier ones proposed by Hansson, Leinaas, and
Myrheim.
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21. de Azćarraga, J.A., Izquierdo, J.M.: Lie Groups, Lie Algebras, Cohomology and Some Applications in

Physics. Cambridge University Press, Cambridge (1995)
22. Gerstenhaber, M.: Ann. Math. 79, 59 (1964)



310 Int J Theor Phys (2008) 47: 297–310

23. Levy-Nahas, M.: J. Math. Phys. 8, 1211 (1967)
24. Nijenhuis, A., Richardson, R.W.: J. Math. Mech. 17, 89 (1967)
25. Vilela Mendes, R.: J. Phys. A: Math. Gen. 27, 8091–8104 (1994)
26. Barut, A.O., Bohm, A.: J. Math. Phys. 11, 2938–2945 (1970)
27. Goldin, G.A., Sarkar, S.: J. Phys. A: Math. Gen. 39, 2757–2772 (2006)
28. Finkelstein, D.R.: Homotopy approach to quantum gravity. arXiv:gr-qc/0608086 (2006)


	Local Currents for a Deformed Heisenberg-Poincaré  Lie Algebra of Quantum Mechanics, and Anyon Statistics
	Abstract
	Global and Local Symmetries
	Heisenberg-Poincaré and Heisenberg-Euclid Symmetry Algebras
	Nonrelativistic Local Current Algebra
	Bose, Fermi, and Intermediate Quantum Statistics
	A Deformed Lie Algebra for Quantum Mechanics
	The Problem of Local Current Algebra for the Deformed Symmetry

	Deformed Local Current Algebras
	Local Current Algebra in Augmented Physical Space
	A Discretized Infinite-Dimensional Algebra
	The Kinetic Energy Hamiltonian

	Anyonic Representations
	Acknowledgements

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


